22026 items (21834 unread) in 44 feeds
Por Ana Casado, editora del equipo de Matemáticas de SM.
En el currículo de Secundaria de Andalucía aparece como contenido “el triángulo cordobés”. Pero…, ¿qué es un triángulo cordobés?
Un triángulo cordobés es un triángulo isósceles cuyos lados están en proporción cordobesa.
El concepto de proporción cordobesa “surge por casualidad, como feliz resultado de un esplendoroso fracaso” como lo explicaba el arquitecto cordobés Rafael de la Hoz Arderiu,s que descubrió y bautizó así a la proporción numérica 1,3.
El arquitecto, amante de las matemáticas, inició un proyecto para certificar la proporción áurea* como canon de belleza universal. Su hipótesis era que a lo largo de historia se había utilizado de forma consciente o inconsciente dicha proporción. Eligió Córdoba para llevar a cabo el estudio por ser una ciudad milenaria donde se habían instalado diversas culturas y por ser su ciudad natal. El resultado fue un fracaso y cancelaron el proyecto. Exceptuando algunos casos puntuales de obras diseñadas por arquitectos no cordobeses, no se encontró la ansiada proporción áurea.
Al poco tiempo, la Diputación de Córdoba le pidió preparar un test de aptitud para asignar becas a estudiantes de Arquitectura. Entre las preguntas propuestas, estaba esta:
“Entre los dos rectángulos siguientes, uno notablemente rechoncho y otro acusadamente alargado (…) tiene que existir un rectángulo equilibrado, bello, perfecto. Dibújenlo”.
La calificación máxima a esta pregunta se otorgaba al dibujar el rectángulo áureo. El resultado fue sorprendente porque ningún estudiante dibujó el rectángulo áureo, y una mayoría significativa sí dibujó un rectángulo menos esbelto que cumplía la siguiente proporción:
A partir de este resultado, se comenzó una investigación repitiendo esta pregunta a personas residentes o nacidas en Córdoba. La frecuencia de la proporción 1,3 fue igualmente muy alta. ¿Por qué la preferencia por la proporción cordobesa y no por la proporción áurea considerada ideal de belleza universal?
Al tener este resultado carácter local, se comenzó estudiando las proporciones de la figura humana en las artes locales cordobesas y se hallaron en el museo arqueológico local, esculturas y mosaicos con figuras humanas proporcionadas según la razón constante 1,3, más próxima al hombre de carne y hueso que al hombre ideal de Leonardo Da Vinci (Studio o El hombre de Vitrubio) o de LeCobusier (El Modulor).
Se retomó el proyecto de analizar las proporciones de la arquitectura cordobesa y se hallaron múltiples ejemplos donde se utiliza esta proporción.
La portada y las arcadas de la Mezquita, la fachada interior de la Sinagoga, la portada de la casa de D. Juan Cosme de Paniagua, la iglesia de Santa Marina de las Aguas, la fachada del convento franciscano de Capuchinos…
A lo largo de los siglos, era evidente en Córdoba, la preferencia por esta proporción que el arquitecto Rafael de la Hoz bautizó como proporción cordobesa.
El siguiente paso fue establecer el origen geométrico de esta razón. Como la proporción áurea se obtiene como la razón entre el radio y el lado de un decágono regular, no fue complicado averiguar que la razón 1,3 correspondía a la proporción entre el radio y el lado de un octógono regular.
El octógono era una figura habitual en la arquitectura cordobesa: las cubiertas de la catedral, las bóvedas de la mezquita, los artesonados de Córdoba y Baena, la plaza de Aguilar, la planta de las torres de la Malmuerta, la fuente del Potro,…
Inicialmente se pensó que la proporción cordobesa tenía carácter local, pero fueron surgiendo estudios que identificaban esta proporción en distintos lugares y épocas. Algunos ejemplos son: las pirámides de Keops, Kefren y Mikerinos, en Egipto, el Panteón de Agripa y la basílica San Pablo Extramuros, en Roma, el arco del Triunfo y el hotel Mayenne, en París,…
La entrada El triángulo cordobés se publicó primero en Aprender a pensar.